A Duality Theory for Unbounded Hermitian Operators in Hilbert Space

نویسنده

  • PALLE E. T. JORGENSEN
چکیده

We develop a duality theory for unbounded Hermitian operators with dense domain in Hilbert space. As is known, the obstruction for a Hermitian operator to be selfadjoint or to have selfadjoint extensions is measured by a pair of deficiency indices, and associated deficiency spaces; but in practical problems, the direct computation of these indices can be difficult. Instead, in this paper we identify additional structures that throw light on the problem. While duality considerations are a tested tool in mathematics, we will attack the problem of computing deficiency spaces for a single Hermitian operator with dense domain in a Hilbert space which occurs in a duality relation with a second Hermitian operator, often in the same Hilbert space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite-dimensional Lie Algebras, Representations, Hermitian Duality and the Operators of Stochastic Calculus

Abstract: We study densely defined unbounded operators acting between different Hilbert spaces. For these, we introduce a notion of symmetric (closable) pairs of operators. The purpose of our paper is to give applications to selected themes at the cross road of operator commutation relations and stochastic calculus. We study a family of representations of the canonical commutation relations (CC...

متن کامل

Pseudo-Hermitian quantum mechanics with unbounded metric operators.

I extend the formulation of pseudo-Hermitian quantum mechanics to η(+)-pseudo-Hermitian Hamiltonian operators H with an unbounded metric operator η(+). In particular, I give the details of the construction of the physical Hilbert space, observables and equivalent Hermitian Hamiltonian for the case that H has a real and discrete spectrum and its eigenvectors belong to the domain of η(+) and cons...

متن کامل

Representations of Hermitian Commutative ∗-algebras by Unbounded Operators

We give a spectral theorem for unital representions of Hermitian commutative unital ∗-algebras by possibly unbounded operators in a pre-Hilbert space. A more general result is known for the case in which the ∗-algebra is countably generated. 1. Statement of the Main Result Our main result is the following: Theorem 1. Let π be a unital representation of a Hermitian commutative unital ∗-algebra A...

متن کامل

Essential self - adjointness

1. Cautionary example 2. Criterion for essential self-adjointness 3. Examples of essentially self-adjoint operators 4. Appendix: Friedrichs' canonical self-adjoint extensions 5. The following has been well understood for 70-120 years, or longer, naturally not in contemporary terminology. The differential operator T = d 2 dx 2 on L 2 [a, b] or L 2 (R) is a prototypical natural unbounded operator...

متن کامل

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009